Bhavesh Shrimali

Lead Scientist, Kimberly-Clark Corp, Neenah, WI || 🛛 : (217)-305-2827

♥: bhaveshshrimali || ♥: bhavesh.shrimali@gmail.com || in : bhaveshshrimali || ♥ : bhaveshshrimali.github.io

SUMMARY

- 8+ years of extensive experience in developing software in **Physics-based** simulation codes in CFD, Nonlinear Finite-Element Solvers, Computer Vision and Deep Learning,
- Strong background in Scientific Machine Learning (SciML), Physics-Informed Neural Networks (PINNs), Neural Operators, DeepONets, Generative AI and Optimization
- Extensive experience in scripting (Python/Julia) for Nonlinear Model Fitting, Automatic Mesh Generation (Gmsh Python/Julia API), Regression, Scientific Visualization,
- One of the leading contributors to the FEniCS-discourse forum (open-source FE software)
- Published 8 papers in peer-reviewed journals and delivered 3 conference talks

EDUCATION

University of Illinois Urbana Champaign (UIUC)

<u>Ph.D. in Civil and Environmental Engineering</u>, GPA: 4.00/4.00
<u>M.S. in Computer Science</u>, GPA: 3.98/4.00
<u>M.S. in Civil Engineering</u>, GPA: 4.00/4.00

Indian Institute of Technology (IIT) Guwahati

B.Tech in Civil Engineering, GPA: 9.22/10.00

SKILLS

- ML Libraries: PyTorch, scikit-learn, JAX, Flux.jl, NVIDIA Modulus, NeuralPDE.jl
- Languages: Python, Julia, C++, Fortran
- FE Libraries: FEniCS, Firedrake, scikit-fem, NGSolve, GridAP.jl, Ferrite.jl
- Commercial FE Packages: ABAQUS, COMSOL (pre-processing)
- Miscellaneous: Bash, Git, Singularity, Docker, buildah, Power BI

WORK EXPERIENCE

- Lead Scientist, Virtual and Digital R&D, Kimberly-Clark Technical
- Developed a **Computer Vision**-based model to determine product-body fit for KC products
- Developed physics-based simulation models to simulate the **coupled dynamic-thermo-viscoelastic response** of KC products under a wide range of mechanical and thermal loading conditions; often at line-speed (very high velocities and thermal gradients)

Leadership & Non-Technical

• Led the design team for designing an end-to-end portal for the the Virtual and Digital R&D within Corporate Research Organization (CRO) for modeling requests, feedback and an interactive dashboard

RESEARCH EXPERIENCE

Rupture of Viscoelastic Solids

Theoretical Component

• Developed a universal criterion to predict nucleation of fracture in viscoelastic elastomers undergoing large

1

April 2023 April 2023 Aug 2017

Urbana-Champaign, IL

Guwahati, India May 2015

May 2023 - present

May 2021 - Apr 2023

[preprint, paper]

Numerical Component

- Developed a robust framework to simulate incompressible and *nearly*-incompressible viscoelasticity to deal with crack singularities, large deformations and large dissipation at the crack front
- Implemented the framework in the open source library **FEniCS** using non-conforming Crouzeix-Raviart finite elements (FE) in space and an adaptive high-order explicit Runge-Kutta discretization in time
- Implemented an adaptive nonlinear solver to switch between *Newton-Rhapson* and *Gradient-Flow* for solving the nonlinear equations at each time step

rearing of viscoclastic rolymers	Tearing	of	Viscoelastic	Polymers
----------------------------------	---------	----	--------------	-----------------

Theoretical Component

- Developed a complete theoretical framework to explain the tearing of viscoelastic sheets subjected to *out of plane* tension
- Deployed the model to explain the celebrated experiments of Knauss on SBR (a hydrocarbon elastomer)

 Numerical Component
 [code]
- Implemented full-field (3D) simulations for the *trousers fracture* test using non-conforming Crouzeix-Raviart finite elements in space and an adaptive implicit/explicit time stepper in time
- Implemented adaptive mesh refinement using open-source libraries mmg3D

Mechanical behavior of viscoelastic composites

Theoretical Component

- Developed a comprehensive analytical model to describe the effective behavior of viscoelastic composites containing two types of microstructures: (a) rubber filled with rigid inclusions and, (b) vacuous bubbles
- Derived analytical solutions in asymptotic limits of (a) slow loading, (b) fast loading and (b) when the rubber reduces to a Newtonian fluid

Numerical Component

- Implemented an automatic and performant microstructure generator based on **Molecular Dynamics** in NumPy/Numba to generate spherical inclusions (rigid as well as vacuous)
- Implemented a high-order bubble-enriched finite element as **Abaqus UEL** and a 5th order Runge-Kutta solver in time
- Implemented automatic meshing, pre/post-processing to couple with the nonlinear solvers in Abaqus

Bending of Perforated Plates

Theoretical Component

- Developed analytical solutions for the overall *pure bending* response of perforated plates with (a) perforations much smaller than the thickness, and (b) thickness much smaller than perforations
- Performed a comprehensive comparison with experiments
- Showed that the bending response is dominated by the porosity (void volume fraction) and has secondary effects from the shape and dispersion of pores

Numerical Component

- Simulated the effect of hole shape, dispersion and porosity on the bending response of plates: considered ellipsoidal, circular, rectangular and square holes with a large range of void volume fraction
- Implemented a non-conforming FE scheme with periodic boundary conditions to determine the overall homogenized response of perforated plates
- Validated the scheme with full-field 3D analysis and performed a convergence study (*h*-refinement)

[code]

[code]

[code]

paper

May 2021 - Apr 2023 [paper]

May 2020 - Sep 2021

Mar 2019 - Aug 2020

[paper, paper]

Macroscopic Response of Syntactic Foams

Aug 2017 - Oct 2018

Aug 2018 - Dec 2018

[paper]

Theoretical Component

- Developed a phenomenological constitutive model for the overall (homogenized) response of syntactic foams
- Demonstrated the accuracy of the proposed model by comparing against experimental results on two types of syntactic foams: (a) PDMS elastomer, (b) Elastomer filled with glass-microballoons Numerical Component code

- Implemented a mixed-FE formulation with periodic boundary conditions in FEniCS to determine the macroscopic response of a RVE/unit cell containing rigid particles and vacuous pores
- Implemented a nonlinear solver to determine the volume fraction of fractured/buckled microballoons under arbitrary applied loads

Macroscopic Response of Porous Elastomers

Theoretical Component

- Developed a closed-form constitutive model to describe the overall/homogenized response of porous elastomers
- Demonstrated the accuracy of the model by comparing it against full-field simulations for a variety of pore-shape, sizes, volume fractions (porosities) and distributions [code]

Numerical Component

- Implemented a mixed-FE formulation with periodic boundary conditions in ABAQUS to determine the macroscopic response of a RVE/unit cell containing vacuous pores
- Validated the numerical results against the proposed closed-form analytical solution and a WENO finite-difference solution

HONORS

\bullet Awarded CEE Research Distinction Fellowship to present research work at WCCM/EG	CCOMAS 2020, USNC/TAM
2022, SES 2022,	(Jan 2020 - Sep 2022)
 List of Teachers Ranked Excellent at UIUC 	(Dec 2017 and 2018)
 Invited Lecture on LaTeXon scientific writing 	(Mar 2017)
 Institute Silver Medal and Department Rank 1, IIT Guwahati 	(Jun 2015)
• Institute Merit Scholarship for securing Dept. Rank 1 for 5 consecutive semesters	(Jan 2012 - Jan 2014)

• Institute Merit Scholarship for securing Dept. Rank 1 for 5 consecutive semesters

COMPUTING PROJECTS

Generalized/Xtended Finite Element Method (GFEM/XFEM) [report, code] Aug 2018 - Dec 2018

- Implemented a 1D Generalized/Xtended Finite Element (FE) code in python using Numpy that implements polynomial and non-polynomial enrichment functions to solve problems with discontinuities
- Implemented a 1D FE code with hierarchical (legendre) basis functions to solve problems with cracks/material discontinuities

Newton-Multigrid FE Solvers for Incompressible Hyperelasticity report, code Aug 2018 - Dec 2018

- Implemented a 2D nonlinear FE solver for incompressible hyperelasticity with smoothed-aggregation multigrid (from pyamg) instead of scipy.sparse.linalg.solve inside a global Newton solver
- Achieved near optimal performance in linear solve with multigrid for a n = 10,000 degree-of-freedom system

High-Order FE methods [report, code]

- Implemented high-order C1 continuous FE basis (Argyris/Hermite) for solving biharmonic (4th order) differential equations
- Demonstrated optimal convergence of the FE solution using a *h*-refinement analysis

COURSES TAKEN AT UIUC

- <u>Computational Mechanics</u>: Numerical Methods (FE/FV/FD) for PDEs; Fast Algorithms and Integral Equations; Multigrid Methods; Generalized/Xtended FEM; Nonlinear Finite Elements; Computational Plasticity
- <u>Deep Learning</u>: Deep Generative and Dynamical Models; Machine Learning; Data Mining; Parallel Programming and Scientific Machine Learning
- Math: Advanced Finite Elements; Partial Differential Equations; Asymptotic Methods

Google Scholar

List of Publications